
Controversies and Challenges

Abstract
While UV radiation is a skin carcinogen, this should not ob-
scure the growing evidence that sunlight has significant 
health benefits, including impacts on cardiovascular and 
metabolic health. Epidemiological and mechanistic evi-
dences for the importance of different wavelengths of sun-
light, including blue light and UV radiation, are presented.

© 2021 S. Karger AG, Basel

Introduction

The health risks associated with excess exposure to 
UV radiation are well known and have been cen-
tral to most public health advice on sun exposure. 
Suspicions that UV radiation might be carcino-
genic were raised as early as the 19th century by 
dermatologists such as Unna who described See-
manshaut [1, 2], the tendency for occupationally 
sun exposed seamen to develop skin photoageing 
and cutaneous cancers. Proof that UV radiation 
was indeed carcinogenic was then confirmed by 
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Findlay in 1928, where, using a mouse model, he 
was able to demonstrate that UV radiation in-
duced skin cancers [3]. The evidence for carcino-
genicity of UV radiation has grown since then with 
an evolution of understanding of the mechanisms 
by which UV radiation can predispose people to 
keratinocyte skin cancers and the more worrying 
malignant melanoma [4]. However, despite a cen-
tury of work, there are no data showing that sun-
light shortens lifespan.

Broadly, there are two patterns of sun exposure 
leading to skin cancers. Chronic sun exposure is a 
risk factor for skin photoageing, squamous cell skin 
cancer and lentigo malignant melanoma. Unfortu-
nately, it has not been possible to provide a dose-
response curve for this relationship other than to 
say that outdoor workers are at increased risk of 
squamous cell skin cancer on sun-exposed sites, 
such as the head and neck, compared with indoor 
workers [5, 6]. This is in sharp contrast to other 
causes of disease such as hypertension [7] and 
smoking [8] in which very precise dose-dependent 
effects on mortality can be calculated. Intermittent 
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sun exposure, particularly burning exposure (sun-
burn) and exposure in childhood, is a risk factor for 
superficial spreading and nodular melanoma [9]. 
Paradoxically chronic sun exposure in adulthood, 
as marked by having an outdoor occupation and 
being tanned, appears protective [9, 10]. While the 
incidence of melanoma is rising in Europe and 
America, possibly as a result of the rise in short in-
tense periods of sun exposure on sunny holidays, 
the mortality is changing little [11], reflecting the 
fact that most melanomas are diagnosed when clas-
sified as thin and thus with a good prognosis. Acral 
melanoma is not related to sun exposure [12]. 
While superficial spreading and nodular melano-
ma are largely diseases of white-skinned popula-
tions, acral melanoma has a similar, but low, inci-
dence in white- and black-skinned people [13] at 
different latitudes, reflecting its UV-independent 
aetiology. Thus, while UV radiation is the major 
environmental risk factor for superficial spreading 
and nodular melanoma, it is the nature of exposure 
rather than the total amount that determines this.

Homo sapiens arose around 200 millennia ago 
in Africa, and the ancestors of non-African hu-
mans left that continent around 80,000 years ago 
[14]. Until the industrial revolution in the mid-
19th century, the entire history of our species has 
been lived predominantly outdoors, whether as 
hunter-gatherers or farmers. Chronic sun expo-
sure is thus the environmental norm for us, and 
human skin colouration has evolved to adapt us to 
local environmental UV radiation levels [15]. DNA 
analysis from west European stone age hunter-
gatherer skeletons, the direct ancestors of current 
pale-skinned British [16] and Scandinavians [17], 
show that as recently as 4,700 BC we had dark skin 
colouration. The rapidity with which high-latitude 
humans have evolved paler skin – only a few hun-
dred generations – suggests a strong adaptive drive 
to pale skin to maximise health benefits from sun-
light exposure and enhance evolutionary fitness.

As our evolutionary history suggests, sunlight is 
a normal and indeed essential part of our environ-
ment. Sunlight and UV exposure were considered 

important clinical and health modalities in the early 
20th century, particularly for treatment of tubercu-
losis. It was not until later that century that medical 
opinion shifted towards using sunblock and limit-
ing UV exposure to prevent skin cancers and eye 
diseases [18, 19]. With the discovery that vitamin D 
could prevent rickets and bone diseases previously 
linked with inadequate sun exposure, clinicians and 
public health agencies began prescribing dietary vi-
tamin D and recommending sun avoidance. How-
ever, as described below, new observations suggest 
that sun exposure has many health benefits, includ-
ing those we have described for cardiovascular and 
metabolic health. We are rediscovering forgotten 
knowledge that sun exposure is beneficial for alert-
ness and cognition, thermal comfort, mood and 
well-being [20–24]. Furthermore, many health ben-
efits of sun exposure may not simply be replaced by 
dietary vitamin D. A more balanced approach to-
wards sun and light exposure is now emerging as an 
important worldwide public health issue.

Vitamin D: Correlation but Not Causation

UVB wavelengths (290–315 nm) of sun radiation 
induce dermal synthesis of vitamin D, essential to 
human bone health. Observational studies report 
inverse relationships between serum 25-hy-
droxyvitamin D (25(OH)D) levels for all-cause 
mortality and many chronic health conditions, 
including hypertension, cardiovascular disease 
(CVD) and diabetes [25]. However, meta-analy-
ses of numerous well-conducted interventional 
studies show limited effects of oral vitamin D sup-
plements on all-cause mortality and numerous 
chronic diseases and major contributing risk fac-
tors, including adiposity, CVD and hypertension, 
diabetes and glucose metabolism disorders, 
metabolic syndrome, multiple sclerosis, mood 
disorders, chronic pain and systemic inflamma-
tion [25–28]. Thus, while high 25(OH)D levels 
are associated with increased incidence of chronic 
disease and markers thereof, interventions to 
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raise levels with oral supplements do not help 
(much). Vitamin D status is more likely to be a 
marker for exposure to sunlight, which acts 
through other mediators to prevent the develop-
ment of chronic ill health [29], and is also a mark-
er itself of good health and thus time spent out-
doors (reverse causation).

Concerningly, health supplement claims 
around vitamin D are not subjected to the same 
scientific and regulatory scrutiny as pharmaceuti-
cal products. Indeed, the vitamin D industry is 
worth around 1 billion dollars per year [30]. The 
desire for a simple solution – oral vitamin D sup-
plementation – to solve multiple health problems 
is understandable, but the first lesson of epidemi-
ology is that correlation is not causation. There is 
unfortunately a history of undeclared conflicts of 
interest in the promotion of vitamin D [30], and a 
sometimes obsessive fixation on the molecule has 
had the unintended consequence of preventing 
exploration of alterative mechanisms by which 
sunlight yields health benefits. The National Insti-
tutes of Health Office of Dietary Supplements 
concluded that “it is … not possible to specify a 
relationship between vitamin D and health out-
comes other than bone health” [31]. Some com-
mon themes can be identified in diseases where 
the ameliorative or preventative effects of sun ex-
posure should be considered. These are the exis-
tence of latitude incidence/prevalence gradient(s) 
and/or seasonality in disease incidence/prevalence 
and an inverse relationship with measured serum 
25(OH)D levels. If oral vitamin D supplementa-
tion reduces disease incidence/prevalence, this is 
indicative of a vitamin D-mediated mechanism, 
but in many/most cases [25, 26, 32, 33] this is not 
seen, thus pointing towards UV-mediated but 
vitamin D-independent processes.

Exciting findings from our research teams and 
others (see below) are providing new evidence 
that low, non-burning levels of sun exposure may 
curb the development (and burden) of chronic 
health conditions, particularly CVD, obesity and 
metabolic dysfunction.

Latitude and Season Correlate Strongly with 
Blood Pressure, CVD and All-Cause Mortality

Incident UV radiation from the sun increases in 
intensity during summer and with decreasing 
latitude (distance from the equator). Seasonal 
variation in systolic blood pressure in temperate 
countries such as the United Kingdom is ∼5–6 
mmHg, while systolic blood pressure (Fig.  1), 
hypertension prevalence and incidence of acute 
coronary syndrome increase with rising lati-
tudes [34–36]. Within Europe, carotid artery 
intima-media thickness, a marker for athero-
sclerosis, correlates more closely with latitude 
than with any other risk factor [37]. There is 
seasonal variation in Australia for hypertensive 
disorders of pregnancy, which peak for births in 
late winter [38].

Seasonal change in the United Kingdom and 
Australia likely contribute significantly towards 
CVD with reduced cervical artery dissection rates 
(associated with stroke) in summer in both coun-
tries [39]. Further afield, we observed in 340,000 
dialysis patients that increased sun exposure cor-
related with reduced blood pressure, with ∼40% 
of this correlation due to UV radiation, indepen-
dently of temperature [40]. (See Table 1 for three 
measurements taken per week for 3 years at 
>2,000 sites in the United States). Consistent with 
this, UVA exposure inversely correlated with in-
cident myocardial infarction in Scotland [41], 
and sunshine duration – rather than simple day-
length – correlated with shifts in ST-elevation 
myocardial infarction occurrences from day-time 
to night-time in summer [42].

COVID-19 and Sun Exposure

COVID-19 has become a pandemic since the start 
of 2020. CVD is a predisposing factor for COV-
ID-19-specific mortality with increased mortality 
seen, after adjustment for age, at higher latitudes 
[43]. However, rapid reviews of the evidence by 
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Fig. 1. Population systolic blood pressure as a function of latitude. Male systolic blood pressure in 1980 (be-
fore modern effective anti-hypertensive agents became available) is plotted against midpoint latitude for all 
198 countries in the world.

Table 1. Units for UV and temperature are 100 × mmHg/(W × m−2), where a unit of 1.0 represents a change of popula-
tion BP of 1 mmHg for a change of incident UV radiation of 100 W/m2

Self-declared skin colour White (n = 218,549) Black (n = 123,908)

SBP change per unit UV (95% CI) SBP change per unit UV (95% CI)

Corrected for co-variates UVA
UVB

−0.75
−12.73

(−0.78 to −0.72)
(−13.22 to −12.23)

−0.63
−10.49

(−0.66 to −0.59)
(−11.07 to −9.91)

Corrected for co-variates and temp UVA
UVB

−0.32
−5.63

(−0.37 to −0.27)
(−6.48 to −4.78)

−0.23
−4.17

(−0.29 to −0.16)
(−5.26 to −3.08)

Adapted from Weller et al. [40].
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both the Royal Society and National Health Ser-
vice Institute for Clinical Excellence have found 
the evidence for any benefit of vitamin D supple-
mentation in reducing COVID-19 mortality to be 
insufficient [44]. COVID-19 mortality in the 
United States inversely correlated with non-
vitamin D forming environmental UVA after 
correcting for extensive confounders. This effect 
is replicated in independent datasets from Italy 
and England, suggesting that sunlight via non-vi-
tamin D pathways may reduce the burden of 
COVID-19 disease [45].

Sun Exposure May Reduce All-Cause Mortality

A range of human studies – all initially designed to 
quantify the risk of skin cancer – shows surprising 
reductions in all-cause mortality with increased 
sun exposure. In 40,000 individuals tracked for 20 
years in Sweden, increased sun exposure was dose-
dependently associated with reduced all-cause 
mortality even after correcting for major known 
confounders (smoking, alcohol, occupation, in-
come, BMI and exercise) [46]. Similarly, in a ran-
domised, controlled, intervention study of 1,700 
residents of far-north Queensland (Australia), 
there was a non-significant trend to higher all-
cause deaths for those in the sunblock interven-
tion (21/812, 2.6%) than the control group (12/809, 
1.5%) [47]. Together, these findings suggest that 
sun exposure promotes longevity.

Our Human Experiments Demonstrate That 
UV Radiation Reduces Blood Pressure

Liu et al. [48] and Oplander et al. [49] have shown 
that controlled UV exposure reduces blood pres-
sure via release of nitric oxide (NO) from skin 
stores. NO is a free radical with signal modifying 
abilities that play a role in multiple physiological 
and pathological pathways. Due to its short 

half-life and tendency to react with other mole-
cules, NO itself cannot be effectively stored but is 
rapidly oxidised to nitrite (NO2−) and then to the 
more stable nitrate (NO3−). There are two gener-
ally different mechanisms in the production of 
NO: One is through the NO synthase pathway, 
and the other is the chemical reduction in the 
nitrate-nitrite-NO pathway [50]. We have previ-
ously found quantities of nitrate, nitrite and ni-
trosothiols stored in the skin, at concentrations 
significantly higher than that in the circulation 
[51]. UV radiation in the presence of thiols can 
photoreduce nitrate to nitrite and thence NO 
[52], leading us to speculate that UV radiation 
might directly mobilise NO from the skin to the 
systemic circulation and produce cardiovascular 
benefits [53]. We then experimentally confirmed 
this in a randomised cross-over study, in which 
whole-body exposure of young male adults to 20 
J/cm2 UVA for 10 min reduced blood pressure by 
∼3 mmHg more than sham irradiation [48]. This 
correlated with a rise in circulating nitrite 
(the stable oxidation product of NO) and fall in 
nitrate. Hypertension is a risk factor for myocar-
dial infarction, and analysis of all myocardial in-
farctions in Scotland in the first decade of this 
century shows that incident inversely correlates 
with UVA levels independently of temperature 
and UVB [41].

Sun Exposure May Reduce Metabolic 
Dysfunction

We have also demonstrated that low, non-burn-
ing doses of UV radiation reduce weight gain and 
metabolic dysfunction in mice fed a high-fat diet 
[54]. For example, UV prevented glucose intoler-
ance (Fig.  2a) and reduced liver lipid levels 
(Fig. 2b). These effects were linked to UV-induced 
NO [55]. In adults the incidence of type 2 diabetes 
and fasting glucose are lowest in summer 
(reviewed in [56]). Seasonal differences in fasting 
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glucose levels have been observed in children with 
obesity in Perth, Australia (Fig.  2c) [57]. Other 
large epidemiological studies suggest that the risk 
of type 2 diabetes is reduced in women with “ac-
tive sun exposure habits” even after accounting 
for confounding physical activity [58].

Other Bioactive Molecules Induced by Sun 
Exposure

A suite of bioactive molecules, in addition to vita-
min D and NO, is induced by sun exposure, which 
have various independent and interacting effects 
on health and well-being. These include dopa-
mine, serotonin, beta-endorphin, urocanic acid, 
glutamate and others yet-to-be discovered. Insuf-
ficiencies in these molecules may contribute to 

all-cause mortality and the development of many 
chronic conditions, including those mentioned 
above (for vitamin D), and others such as internal 
cancers (e.g., breast and colon), myopia, autism, 
Alzheimer’s disease, learning disabilities and 
asthma [59]. Space limitations prevent more ex-
tensive discussion here but to remind readers that 
there is more to sunlight than just vitamin D, a 
couple of interesting examples are worth high-
lighting.

Cognitive function, Alzheimer’s disease and 
dementia are more prevalent in individuals with 
low measured serum vitamin D levels [60, 61], 
but with no evidence for benefit from oral sup-
plementation. This probably in part reflects poor 
cardiovascular health for which low vitamin D 
levels are a (non-causally related) marker [33]. 
In a superb series of experiments, researchers 

Fig. 2. Metabolic dysfunction is reduced by UV light. Twice a week exposure to low dose UV light suppressed: (a) 
blood glucose measured during a glucose tolerance test and (b) liver lipid (fat) levels (red staining; oil red) in mice 
fed a high fat diet (HFD). Data from (a and b) are shown as mean ± SEM (* p < 0.05, comparing LFD [low fat diet] con-
trol treatment, or UVR, to HFD, one-way ANOVA) and are reproduced from that reported in Dhamrait et al. [54]. In (c) 
seasonal changes in fasting glucose occurred in children with obesity living in Perth (mean ± SD, * p < 0.05, one-way 
ANOVA), in whom a strong inverse relationship (r = −0.67, p = 0.002) for fasting glucose, and daily terrestrial UVR 
levels measured in the previous 6 months were observed. Data from (c) are reproduced from that reported in 
Clarke et al. [57].
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from China have identified a fascinating 
alternative pathway starting with mobilisation of 
urocanic acid by UV radiation in the skin, feed-
ing into an intraneuronal pathway for glutamate 
biosynthesis leading to enhanced learning in a 
rodent model [62].

UV radiation affects gene regulation indepen-
dently of vitamin D [63]. Remarkably, around 
30% of the human transcriptome has a seasonal 
cycle with, broadly speaking, anti-inflammatory 
genes being upregulated in summer and pro-

inflammatory genes in winter [64]. These varia-
tions are also seen in serum protein markers of 
inflammation and may represent an evolutionari-
ly driven “turning-up” of pro-inflammatory path-
ways to fight infectious diseases more prevalent 
in  winter months [64]. However, this pro-
inflammatory milieu (occurring when UV radia-
tion levels are lower) may be linked to increased 
prevalence of metabolic/cardiovascular/cerebro-
vascular disease observed in winter.

Blue Light, Circadian Rhythm and Health 
Effects

Blue light (λ∼450–490 nm) is emitted as part of 
the spectrum of sunlight and by modern electric 
devices (e.g., computers, LED screens and elec-
tric lighting technologies). There are known and 
well-characterised benefits of blue light expo-
sure, when received at the right time of day, for 
the maintenance of day-to-night rhythmic pat-
terns of sleep and other physiological activities 
that exhibit a circadian rhythm, including blood 
pressure and blood glucose. Blue light is a criti-
cal environmental modulator of human circa-
dian rhythms, acting through photoreceptive 
cells in the retina of the eye to signal to the brain 
to regulate the production of the hormone mel-
atonin and keep central and peripheral body 

clocks in sync. Disruption of circadian rhythm 
may increase risk for chronic diseases such as 
obesity, depression, internal cancers, neurode-
generative diseases, metabolic disorders and in-
flammation [65]. Exposure to electrically gener-
ated (blue-containing) light at the wrong time of 
day (i.e., night) may cause circadian disruption. 
This is hypothesised to be an important driver 
of chronic diseases and is presumed to be medi-
ated by increased use of computers, tablets and 
mobile phones [66] and the increased brightness 
of commercially available screens, some with 
peak luminance of 1,000 cd/m2 [67]. While there 
is currently much concern about light from 
these electric devices suppressing the produc-
tion of melatonin and disrupting circadian 
rhythms, research has also shown that insuffi-
cient exposure to blue-rich light early in the day 
can also lead to circadian disruption [68, 69].

Summary

Sun exposure is the environmental norm for 
Homo sapiens. While excess UV radiation, par-
ticularly sunburn, is a major risk factor for the 
development of skin cancer, a growing number 
of health benefits are being identified. Unsur-
prisingly, for an exposure which has been with 
us throughout our evolutionary history, several 
mediators and gene regulatory mechanisms ac-
count for this, in addition to vitamin D. Good 
medicine involves the study of benefits as well as 
risks linked to any behaviour, and advice on 
“healthy sun” has to take these benefits into con-
sideration to give a properly balanced message.
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